EXPONENTIALS AND LOGARITHMS

1 A radioactive substance is decaying such that its mass, m grams, at a time t years after initial observation is given by

$$
m=60 \mathrm{e}^{k t},
$$

where k is a constant.
Given that when $t=100, m=42$,
a find the value of k,
b find the value of t when $m=30$.
2 Solve each equation, giving your answers correct to 2 decimal places.
a $\mathrm{e}^{2 x}-5.7 \mathrm{e}^{-x}=0$
b $\ln x-\ln (x-1)=\frac{1}{2}$
3

The diagram shows the curves $y=\ln (4 x-3)$ and $y=1+\ln x$ which cross the x-axis at the points A and B respectively.
a Find the coordinates of A and B.
The two curves intersect at the point C.
b Find the exact x-coordinate of C, giving your answer in terms of e.
4 Find, as natural logarithms, the roots of the equation

$$
\begin{equation*}
2 \mathrm{e}^{x}+3 \mathrm{e}^{-x}=7 \tag{5}
\end{equation*}
$$

5 A scientist carries out an experiment to investigate the growth of a population of flies. She introduces a colony of flies into a closed environment and uses the model that after t days the number of flies in the environment, N, is given by

$$
N=800 \mathrm{e}^{0.01 t} .
$$

Find, according to this model,
a the number of flies introduced into the environment,
b the size of the population after 20 days,
c the least number of days after which the population will exceed 2000 .

$$
\mathrm{f}(x)=1+\mathrm{e}^{2 x+1}
$$

a Solve the equation $\mathrm{f}(x)=10$, giving your answer in the form $a+\ln b$ where a is rational and b is an integer.
b Find, to 3 significant figures, the x-coordinate of the point where the curve $y=\mathrm{f}(x)$ intersects the curve $y=3-\mathrm{e}^{x}$.

7 Giving your answers in exact form, solve the equations
a $\ln (4 x-1)=2$,
b $7-\mathrm{e}^{1-3 y}=0$.
8 At time $t=0$, there are 800 bacteria present in a culture. The number of bacteria present at time t hours is modelled by the continuous variable N and the relationship

$$
N=a \mathrm{e}^{b t}
$$

where a and b are constants.
a Write down the value of a.
Given that when $t=2, N=7200$,
b find the value of b in the form $\ln k$,
c find, to the nearest minute, how long it takes for the number of bacteria present to double.

9 a Simplify

$$
\begin{equation*}
\frac{x^{2}-4 x+3}{x^{2}+x-2} . \tag{3}
\end{equation*}
$$

b Solve the equation

$$
\begin{equation*}
\ln \left(x^{2}-4 x+3\right)=1+\ln \left(x^{2}+x-2\right) \tag{4}
\end{equation*}
$$

giving your answer in terms of e .
10 Giving your answers to an appropriate degree of accuracy, solve the simultaneous equations

$$
\begin{align*}
& \mathrm{e}^{y}+5-9 x=0 \\
& y-\ln (x+4)=2 \tag{7}
\end{align*}
$$

11 a Describe fully the single transformation which maps the graph of $y=\mathrm{e}^{x}$ onto the graph of $y=\mathrm{e}^{-x}$.
b Sketch the graphs of $y=\mathrm{e}^{-x}$ and $y=\mathrm{e}^{3 x+1}$ on the same diagram, showing the coordinates of any points of intersection with the coordinate axes.
c Find the exact coordinates of the point of intersection of the two graphs.
12 a Given that $t=\ln x$, find expressions in terms of t for
i $\ln \sqrt{x}$,
ii $\ln \left(\mathrm{e}^{2} x\right)$.
b Hence, or otherwise, solve the equation

$$
\begin{equation*}
5+\ln \sqrt{x}=\ln \left(\mathrm{e}^{2} x\right) \tag{3}
\end{equation*}
$$

13 A bead is projected vertically upwards in a jar of liquid with a velocity of $13 \mathrm{~m} \mathrm{~s}^{-1}$. Its velocity, $v \mathrm{~m} \mathrm{~s}^{-1}$, at time t seconds after projection, is given by

$$
v=c \mathrm{e}^{-k t}-2 .
$$

a Find the value of c.
Given that the bead has a velocity of $7 \mathrm{~m} \mathrm{~s}^{-1}$ after 5.1 seconds, find
b the value of k correct to 4 decimal places,
c the time taken for its velocity to decrease from $10 \mathrm{~m} \mathrm{~s}^{-1}$ to $4 \mathrm{~m} \mathrm{~s}^{-1}$.

